

Reaction of gem-Dibromocyclopropanes or Iodobenzofuran with Trialkylmanganate

Hirotada Kakiya, Rie Inoue, Hiroshi Shinokubo and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Accepted 7 December 1999

Abstract—Treatment of gem-dibromocyclopropanes with trialkylmanganate, derived from manganese(II) chloride and three equivalents of Grignard reagent or alkyllithium, followed by an addition of electrophiles provided dialkylated cyclopropanes in good yields. It was found that the reaction of *gem*-dibromocyclopropanes with alkylmagnesium halide proceeded in the presence of a catalytic amount of manganese(II) chloride. The use of iodobenzofuran in place of gem-dibromocyclopropane gave a ring opening product, 2-alkenylphenol. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Organomanganese reagents are among the less expensive organo transition metal compounds due to the low cost of manganese metal. However, contrary to organocopper reagents, which have been extensively studied in organic synthesis, organomanganese compounds have been almost ignored until 1976. Then, Professors J. F. Normant and G. Cahiez started studies on the preparation of organomanganese reagents and subsequent synthetic applications of these compounds.¹ They introduced the procedure for preparation of three types of organomanganese reagents, organomanganese halide (RMnX), dialkylmanganese (R_2Mn) , and organomanganate (R_3MnMt) . Among them, trialkylmanganate is the most stable reagent and it is stable at room temperature. Meanwhile, dialkylmanganese such as $n-\text{Bu}_2\text{Mn}$ is unstable and decomposes at -30°C . The stability of RMnX is between dialkylmanganese and trialkylmanganate. Taking account of the stability and reactivity, we chose trialkylmanganate and examined several reactions.

Dialkylation of gem-dibromocyclopropanes with trialkylmanganate and manganese(II) chloridecatalyzed reaction with alkylmagnesium bromide

Cyclopropane derivatives are versatile synthetic intermediates. Double alkylation of gem-dihalocyclopropanes, which can be easily prepared by the addition of dihalocarbene to olefins, provides us with an effective route to a variety of functionalized cyclopropane derivatives. The transformation of gem-dihalocyclopropanes into 1-alkyl-1-butylcyclopropanes has been reported to proceed by successive treatment with dibutylcuprate² or tributylzincate^{3,4} and several electrophiles. In this paper we describe that the reaction of gem-dibromocyclopropanes with trialkylmanganate followed by treatment with electrophiles provides dialkylated cyclopropanes as in the case of the reaction with cuprates or zincates and also that the reaction of gemdibromocyclopropanes with alkylmagnesium halides takes place in the presence of a catalytic amount of manganese(II) chloride.

Treatment of gem-dibromocyclopropane 1a with tributylmanganate, generated from $MnCl₂$ and three equivalents of butylmagnesium bromide gave a mixture of trans-1 butyl-2-hexylcyclopropane (2a) and cis-isomer 3a in 89% combined yield $(2a/3a=71/29)$ (Scheme 1).

Various gem-dibromocyclopropanes were allowed to react first with trialkylmanganate, triallylmanganate or tris(dimethylphenylsilyl)manganate⁵ and then with a variety of electrophiles. The results are summarized in Table 1. Among the solvent systems examined (THF, ether, DME), THF gave the best results. Several comments are worth

Scheme 1.

Keywords: gem-dibromocyclopropanes; manganese(II) chloride; 2-alkenylphenol.

^{*} Corresponding author. Tel.: $+81-75753-4868$; fax: $+81-75761-8846$; e-mail: oshima@fm1.kuic.kyoto-u.ac.jp

^{0040-4020/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(99)01095-9

Table 1. Stereoselective dialkylation of *gem*-dibromocyclopropanes (the reactions were performed at 0° C unless otherwise stated)

1) R ⁱ ∍MnMtl	
2) Electrophile ν	

^a Quenching the reaction with EtOH or H₂O gave the same results (yield and isomeric ratio of 2/3).
^b Pd(PPh₃₎₄ (10 mol%) was added. ^c The reaction was performed at -48° C.

noting. (1) In contrast to the reaction with cuprate or zincate which has been performed at -48 or -85°C , the reaction with manganate could be performed conveniently at 0° C. The reaction of 1a with n-Bu₃MnLi at -78° C for 30 min provided 1-bromo-2-hexylcyclopropane⁶ (cis/trans=1/2) in 65% yield in addition to an isomeric mixture of 1-butyl-2 hexylcyclopropane $(2a/3a=76/24, 30\%$ yield). Moreover, treatment of 1a with *n*-Bu₃MnMgBr at -78° C for 30 min resulted in almost complete recovery of 1a. (2) Tributylmanganesemagnesium bromide, derived from $MnCl₂$ and three equivalents of butylmagnesium bromide, afforded better yields of butylated cyclopropanes 2 and 3 than tributylmanganeselithium generated from butyllithium (Entry 1 vs. 2, 11 vs. 12). (3) Triphenylmanganate Ph_3Mn- MgBr or Ph_3MnLi gave phenylated cyclopropane in 34% or 30% yield, respectively, upon treatment of 1a. (4) $(CH_2=CH)_3MnMgBr$ and $(Me_3Si-C=C)_3MnMgBr$ gave a minimal amount of the corresponding alkenyl- or alkynylcyclopropanes $(<5\%)$. Manganates having secondary and tertiary alkyl ligands such as $i-Pr_3MnMgBr$ and

 t -Bu₃MnMgCl gave 1-bromo-2-hexylcyclopropane in $50-$ 55% yield along with an unidentified complex mixture which did not contain the desired isopropylcyclopropane or tert-butylcyclopropane. (5) The intermediary cyclopropylmanganese reagents 5 could be trapped by acid chloride, $\frac{7}{1}$ iodine, and vinyl bromide (in the presence of Pd(PPh₃)₄ (10 mol%))⁸ as well as methyl iodide and allyl bromide. (6) 1,1-Dichlorocyclopropane such as 9,9 dichlorobicyclo[6.1.0]nonane was found to be unreactive.

We are tempted to assume a similar reaction mechanism to the reaction with cuprate and zincates: (1) the initial halogen-manganese exchange at the less hindered bromine to afford 4; (2) alkyl migration under Br^- elimination producing 5 (inversion on the cyclopropane carbon); (3) the second alkylation by R^2X with retention of the configuration. The stereoselective formation of 2 might be attributed to the bulkiness of the manganese reagents which attack the less hindered halogen selectively (Scheme 2).

 \Box

 \overline{a}

 $n₁$

◡ i) H 3MNWGBr $\ddot{+}$ 2) Electrophile `Br F۱. E' 2							
Entry	Substrate $1(1.0 \text{ mmol})$	RMtl (3.0 mmol)	Electrophile (3.0 mmol)	Yield $(\%)$	Isomeric ratio of 2/3		
2 3 4 5 6	$n - C_6H_{13}$ Br Br 1a	n -BuLi n -BuMgBr n -BuMgBr $CH2=CHCH2MgBr$ $CH2=CHCH2MgBr$ PhMe ₂ SiLi	H_2O H_2O $CH2=CHCH2Br$ H ₂ O $CH2=CHCH2Br$ EtOH	68 75 57 79 47 43	66/34 79/21 81/19 58/42 - 79/21		
7 8	Br `Br 1b	n -BuLi n -BuMgBr	H_2O EtOH	62 51	85/15 93/7		
9	Ph Br $1d$ ^{Br}	n -BuMgBr	H_2O	51	77/23		

Table 2. Manganese(II) chloride-catalyzed reaction of gem-dibromocyclopropanes (the reactions were performed in the presence of 0.1 mmol of MnCl₂)

 \leftrightarrow \sim \uparrow \leftrightarrow \leftrightarrow \sim \sim \Box

Moreover, the reaction proceeded in the presence of a catalytic amount of manganese(II) chloride. For instance, an addition of a solution of dibromocyclopropane 1a to a THF solution of butylmagnesium bromide and manganese(II) chloride (10 mol%) at 0° C gave 1-butyl-2-hexylcyclopropane 2a and 3a in 75% combined yield after aqueous workup. In contrast, the reaction of 1a with butylmagnesium bromide without manganese provided 1,2-nonadiene in 95% yield. The representative results of the catalytic reactions are shown in Table 2.

 \mathbf{D}

Dr.

Ring opening of iodobenzofuran with trialkylmanganate

The reaction of 1,1-dibromo-1-octene with tributylmanganate took place very easily even at -78° C. However, the expected product based on 1,2-migration reaction could not be detected and unidentified complex mixture was obtained (Scheme 3).

Then, we turned our attention to heteroatom substituted alkenyl halides such as 2 -iodobenzofuran, $9,10$ $2,6$ -dibromopyridine, 11 and 2-iodobenzothiophene. Among them, 2iodobenzofuran proved to be a good substrate and afforded the desired ring-opening product upon treatment with trialkylmanganate. Thus, an addition of tributylmanganate to a solution of 2-iodobenzofuran (6) in THF followed by heating a mixture at 50 \degree C for 2.5 h gave 2-[(E)-1-hexenyl]phenol (9a) in 49% yield. Quenching the reaction mixture

with D_2O provided 2-[(E) -2-deuterio-1-hexenyl]phenol. (E)-Alkene was obtained exclusively (Scheme 4).

The reaction might proceed as follows: (1) iodine-manganese exchange to provide a manganate 7; (2) migration of butyl group from manganese to an adjacent carbon under cleavage of $C-O$ bond producing 8; and (3) protonation of alkenylmanganese species upon aqueous workup.

The reaction also proceeded in a catalytic manner. For instance, treatment of 6 with butylmagnesium bromide in THF in the presence of a catalytic amount of $MnCl₂$ (10 mol%) at 25° C for 10 h gave 2-alkenylphenol 9a in 21% yield. The change of the solvent from THF to ether dramatically increased the yield up to 85% after 1 h at 25°C. Various Grignard reagents were examined in the $MnCl₂-catalyzed$ ring-opening reaction of 6. Ethylmagnesium bromide or allylmagnesium bromide gave the corresponding (E) -2-alkenylphenol **9b** or **9c** in 88% or 46% yield, respectively after stirring the reaction mixture for 1 or 1.5 h at 25° C. In contrast, the reaction with phenylmagnesium bromide or methylmagnesium iodide proceeded very slowly at 25° C and afforded the corresponding ring-opened product **9d** or **9e** in 62 or 46% yield, respectively after heating the reaction mixture at reflux for 16 or 28 h. In the case of methylmagnesium iodide, dimethylated product, 2-(2-methyl-1-propenyl) phenol (10) was obtained in 18% yield in addition to the desired 9e (Scheme 5).

$$
n-C_6H_{13}
$$
 Br $\xrightarrow{11}$ $n-Bu_3MnMgBr$ $n-C_6H_{13}$ $n-Bu$ $n-C_6H_{13}$ $n-Bu$ $n-C_6H_{13}$ $n-Bu$

Scheme 3.

11b: $E = CH_2CH = CH_2$

Scheme 5.

The intermediary alkenylmagnesium in the $MnCl₂$ catalyzed reaction of 6 could be trapped by various electrophiles. An addition of D_2O , allyl bromide or benzaldehyde gave the corresponding adducts (11a, 11b or 11c) in 77, 63 or 86%, respectively. Furthermore, quenching the reaction mixture with CO_2 produced 3-butyl-2H-benzopyran-2-one 12 in 53% yield.¹² (Scheme 6).

11a: $E = D$

Financial support by grant-in-aid for Scientific Research on Priority Area (B) (No. 10208208) and grant-in-aid for Scientific Research (No. 09450341) from the Ministry of Education, Science, Sports and Culture, Japan, is acknowledged. We also thank Prof. Tamejiro Hiyama for helpful discussions.

Experimental

Distillation of the products was performed using Kugelrohr (Büchi); the boiling points are indicated by the air-bath temperature values without any correction. The NMR spectra (1 H and 13 C) were recorded on a Varian GEMINI 300 spectrometer in CDCl₃; tetramethylsilane (TMS) was used as an internal standard. The IR spectra were determined on a JASCO IR-810 spectrometer. The analyses were carried out at the Elemental Analysis Center of Kyoto University.

General procedure for the reaction of gem-dibromocyclopropane with trialkylmanganate

The reaction of 1,1-dibromo-2-hexylcyclopropane (1a) with tributylmanganate is representative (Entry 2, Table 1). Manganese(II) chloride (151 mg, 1.2 mmol) was sonicated in tetrahydrofuran (THF, 10 ml) under argon atmosphere for 20 min. Butylmagnesium bromide (1.0 M ether solution, 3.6 ml, 3.6 mmol) was added to the suspension of $MnCl₂$ in THF at 0° C. The mixture turned into a clear brown solution and then was stirred for 20 min at 0° C. A solution of dibromocyclopropane 1a (0.28 g, 1.0 mmol) in THF (2 ml) was added at 0° C and the whole was stirred at 0° C for 1 h and then at 25° C for 20 min. The mixture was poured into

1 M HCl and extracted with hexane $(3\times20 \text{ ml})$. Purification of the products by silica-gel column chromatography gave a mixture of 2a and 3a (162 mg) in 89% combined yield $(2a/3a=71/29)$.

11c: $E = PhCH(OH)$

Physical data for 2a, 3a, 7-butylnorcarane, 9-butylbicyclo- [6.1.0]nonane, 1-butyl-2-phenylcyclopropane and 1-butyl-2-[(phenylmethoxy)methyl]cyclopropane were identical with those reported in literature.^{2,3,13}

1,2-Dihexycyclopropane $(2/3=86/14)$. IR (neat) 3056, 2986, 2952, 2920, 2850, 1467, 1458, 1378, 1020, 721 cm⁻¹; ¹H NMR (CDCl₃) δ -0.28--0.23 (m, 0.14H), 0.11 (t, $J=6.6$ Hz, 1.72H), 0.28 -0.40 (m, 1.72H), 0.49 -0.57 $(m, 0.14H), 0.58-0.68$ $(m, 0.28H), 0.86$ $(t, J=6.9$ Hz, 6H), 1.01-1.40 (m, 20H); ¹³C NMR (CDCl₃) δ 10.78, 11.64, 14.00, 15.67, 18.68, 22.60, 28.55, 29.13, 29.28, 29.58, 30.11, 31.88, 34.31. Found: C, 85.34; H, 14.15%. Calcd for $C_{15}H_{30}$: C, 85.63; H, 14.37%.

9-Allylbicyclo[6.1.0]nonane $(2/3=83/17)$. IR (neat) 3350, 2974, 2918, 2848, 2684, 1640, 1466, 1446, 1354, 1300, 1277, 1150, 1025, 993, 961, 908, 736 cm⁻¹; ¹H NMR $(CDCl_3)$ δ 0.12-0.22 (m, 0.83H), 0.32-0.44 (m, 1.66H), $0.60-0.69$ (m, 0.17H), $0.70-0.83$ (m, 0.17H), $0.84-1.02$ $(m, 1.83H), 1.03-1.16$ $(m, 0.34H), 1.25-1.42$ $(m, 4H),$ $1.44-1.82$ (m, 4H), $1.93-2.10$ (m, 4H), $4.89-5.12$ (m, 2H), $5.84-5.98$ (m, 0.17H), 5.87 (ddt, $J=17.1$, 10.2, 6.0 Hz, 0.83H); ¹³C NMR (CDCl₃) δ 17.71, 21.51, 22.33, 22.60, 26.45, 26.52, 26.70, 29.59, 29.71, 37.69, 113.86, 138.65. Found: C, 87.68; H, 12.52%. Calcd for $C_{12}H_{20}$: C, 87.73; H, 12.27%.

3-Dimethylphenylsilyl-1,1,2,2-tetramethylcyclopropane. IR (neat) 3066, 3046, 2936, 2866, 1470, 1455, 1428, 1378, 1248, 1139, 1111, 914, 880, 833, 811, 779, 726, 698 cm⁻¹;
¹H NMP (CDCL) $\delta = 0.54$ (c, 1H) 0.20 (c, 6H) 1.00 ¹H NMR (CDCl₃) δ -0.54 (s, 1H), 0.29 (s, 6H), 1.09 $(s, 6H), 1.17$ $(s, 6H), 7.30-7.39$ $(m, 3H), 7.50-7.57$ $(m, 2H);$ ¹³C NMR (CDCl₃) δ 0.04, 20.64, 24.34, 25.10, 25.34, 127.71, 128.57, 133.69, 141.58. Found: C, 77.30; H, 10.66%. Calcd for $C_{15}H_{24}Si$: C, 77.51; H, 10.41%.

General procedure for the reaction of gem-dibromocyclopropane with trialkylmanganate followed by addition of electrophile

Preparation of 1-butyl-2-hexyl-1-iodocyclopropane is representative (Entry 6, Table 1). A solution of 1a (0.28 g, 1.0 mmol) in THF (2 ml) was added to a solution of tributylmanganate generated from $MnCl₂$ (151 mg, 1.2 mmol) and butylmagnesium bromide (3.6 mmol). The resulting mixture was stirred at 0° C for 1 h and then at 25° C for 20 min. The mixture was cooled to -78° C and iodine (0.46 g, 3.6 mmol) was added. The whole was warmed to room temperature over 1 h and stirred for another 30 min. The mixture was poured into aq. $Na₂S₂O₃$ and extracted with hexane $(3\times20 \text{ ml})$. Purification by silica-gel column chromatography gave a mixture of cis- and trans-1-butyl-2-hexyl-1-iodocyclopropane (cis/trans= $72/28$): Bp 130-140^oC (bath temp, 0.5 Torr); IR (neat) 3058, 2954, 2924, 2852, 1466, 1379, 1294, 1261, 1211, 1164, 1116, 1031, 942, 914, 800, 724 cm⁻¹; ¹H NMR (CDCl₃) δ -0.05-0.10 (m, 0.72H), 0.32 (t, $J=6.3$ Hz, 0.28H), 0.68 (t, $J=6.0$ Hz, 0.72H), $0.80-0.98$ (m, 6H), $1.02-1.75$ (m, 17.28 H); ¹³C NMR (CDCl₃) δ 13.98, 14.01, 21.81, 22.00, 22.51, 22.56, 22.80, 23.67, 24.02, 24.67, 28.63, 28.70, 29.01, 29.17, 30.17, 31.68, 31.77, 32.50, 36.95, 39.15, 46.00. Found: C, 50.79; H, 8.40%. Calcd for $C_{13}H_{25}I$: C, 50.66; H, 8.17%.

Physical data for 1-butyl-1-methyl-2-hexylcyclopropane and 1-benzoyl-1-butyl-2-hexylcyclopropane were identical with those reported in literature. $3,13$

1-Allyl-1-butyl-2-hexylcyclopropane $(2/3=89/11)$. IR (neat) 3072, 3050, 2954, 2920, 2852, 1640, 1467, 1459, 1415, 1379, 1020, 993, 909, 723 cm⁻¹; ¹H NMR (CDCl₃) δ -0.14 (dd, J=5.1, 4.5 Hz, 0.11H), -0.09 (dd, J=5.4, 4.5 Hz, 0.89H), $0.30-0.39$ (m, 1H), $0.43-0.55$ (m, 1H), 0.80 -0.90 (m, 6H), 1.11 -1.44 (m, 16H), 1.76 (dd, $J=15.0$, 6.6 Hz, 0.11H), 1.92 (dd, $J=15.0$, 6.6 Hz, 0.89H), 2.01-2.16 (m, 1H), 4.93-5.02 (m, 0.22H), 4.98 (d, $J=10.2$ Hz, 0.89H), 5.02 (d, $J=17.1$ Hz, 0.89H), 5.69-5.83 (m, 0.11H), 5.81 (ddt, $J=17.1$, 10.2, 6.9 Hz, 0.89H); ¹³C NMR (CDCl₃) δ 14.00, 14.06, 18.00, 22.59, 22.86, 22.98, 24.06, 28.50, 29.22, 29.38, 30.07, 31.84, 35.16, 37.44, 115.34, 115.45, 137.75. Found: C, 86.03; H, 13.70%. Calcd for $C_{16}H_{30}$: C, 86.41; H, 13.59%.

1-Butyl-2-hexyl-1-vinylcyclopropane $(2/3=99/1)$. IR (neat) 3080, 3058, 2954, 2920, 2852, 1634, 1460, 1378, 1261, 1026, 993, 908, 894, 723 cm⁻¹; ¹H NMR (CDCl₃) δ $0.33-0.40$ (m, 1H), $0.52-0.58$ (m, 1H), $0.62-0.75$ (m, 1H), 0.86 (t, $J=6.9$ Hz, 6H), $1.14-1.48$ (m, 16H), 4.93 (dd, $J=17.1$, 1.8 Hz, 1H), 5.01 (dd, $J=10.5$, 1.8 Hz, 1H), 5.69 (dd, J=17.1, 10.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.01, 18.15, 22.58, 22.90, 26.54, 27.43, 29.03, 29.10, 29.13, 29.75, 31.81, 37.99, 113.32, 140.33. Found: C, 86.21; H, 13.54%. Calcd for $C_{15}H_{28}$: C, 86.46; H, 13.54%.

1-Allyl-1,2-dihexylcyclopropane $(2/3=88/12)$. IR (neat) 3072, 3050, 2954, 2920, 2850, 1640, 1460, 1415, 1379, 1018, 993, 909, 721 cm⁻¹; ¹H NMR (CDCl₃) δ -0.14 (dd, $J=5.4$, 5.4 Hz, 0.12H), -0.09 (dd, $J=5.4$, 5.4 Hz, 0.88H), $0.31-0.40$ (m, 1H), $0.43-0.54$ (m, 1H), $0.81-0.99$ $(m, 6H), 1.14-1.42$ $(m, 20H), 1.76$ (dd, $J=14.7, 6.6$ Hz, 0.12H), 1.90 (dd, $J=14.7$, 6.6 Hz, 0.88H), 2.00–2.16 (m, 1H), $4.92-5.06$ (m, 2H), $5.68-5.88$ (m, 1H); ¹³C NMR (CDCl3) ^d 13.91, 17.68, 18.01, 22.55, 23.05, 23.77, 24.11, 26.65, 29.19, 29.37, 29.48, 29.68, 30.06, 30.71, 31.83, 35.24, 37.80, 115.33, 115.49, 137.18, 137.80. Found: C, 86.04; H, 13.76%. Calcd for $C_{18}H_{34}$: C, 86.32; H, 13.68%.

7-Allyl-7-butylnorcarane $(2/3=97/3)$. IR (neat) 3072, 2924, 2854, 1639, 1467, 1449, 1377, 991, 909 cm⁻¹; ¹H NMR (CDCl₃) δ 0.56-0.66 (m, 2H), 0.86 (t, J=6.9 Hz, 2.91H), 0.91 (t, $J=7.2$ Hz, 0.09H), 1.06-1.46 (m, 12H), $1.79-1.93$ (m, 2.06H), 2.09 (d, J=6.6 Hz, 1.94 H), 4.97 $(d, J=10.2 \text{ Hz}, 0.03\text{ H}), 4.98 (d, J=17.1 \text{ Hz}, 0.03\text{ H}), 5.03$ $(d, J=10.2 \text{ Hz}, 0.97\text{ H}), 5.08 (d, J=17.1 \text{ Hz}, 0.97\text{ H}), 5.83$ (ddt, J=17.1, 10.2, 6.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.02, 18.54, 19.11, 22.15, 22.84, 24.46, 28.26, 30.85, 38.95, 115.36, 137.32.

9-Benzoyl-9-butylbicyclo[6.1.0]nonane $(2/3=84/16)$. IR (neat) 3056, 3022, 2954, 2920, 2852, 1672, 1598, 1581, 1467, 1449, 1349, 1280, 1250, 1210, 1196, 1174, 1073, 1053, 1020, 976, 960, 935, 806, 782, 741, 715, 691 cm⁻¹;
¹H NMP (CDCL) ≥ 0.76 (t, $I=6.0$ Hz, 2.52H) 0.86 (t ¹H NMR (CDCl₃) δ 0.76 (t, J=6.9 Hz, 2.52H), 0.86 (t, $J=7.2$ Hz, 0.48H), 0.90 -1.08 (m, 4H), 1.10 -1.42 (m, 8H), $1.48-1.69$ (m, 6H), $1.97-2.06$ (m, 2H), $7.39-7.55$ (m, 3H), 7.94 -8.00 (m, 2H); ¹³C NMR (CDCl₃) major product δ 13.76, 22.33, 24.43, 26.22, 28.47, 29.55, 29.65, 35.87, 39.95, 128.37, 129.57, 132.55, 137.32, 200.61. Found: C, 84.28; H, 10.01%. Calcd for $C_{20}H_{28}O$: C, 84.45; H, 9.92%.

1-Allyl-1-butyl-2-phenylcyclopropane $(2/3=92/8)$. IR (neat) 3058, 3022, 2992, 2952, 2922, 2854, 1639, 1605, 1498, 1457, 1440, 1416, 1378, 1085, 1070, 1028, 996, 910, 775, 728, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 0.69–0.80 $(m, 1.24 \text{ H})$, 0.81 -0.87 (m, 0.08H) , 0.87 -0.96 (m, 3.68H) , 1.10±1.66 (m, 6.92H), 1.87±1.99 (m, 2H), 2.34 (dd, J=14.1, 7.5 Hz, 0.08H), 4.89 (d, J=17.4 Hz, 0.92H), 4.91 $(d, J=10.2 \text{ Hz}, 0.92 \text{ H}), 5.07 (d, J=9.9 \text{ Hz}, 0.08 \text{ H}), 5.08 (d,$ $J=16.8$ Hz, 0.08H), 5.67 (ddt, $J=17.4$, 10.2, 6.9 Hz, 0.92H), 5.91 (ddt, $J=16.8$, 9.9, 7.2 Hz, 0.08H), 7.12-7.26 (m, 3H), 7.27 -7.35 (m, 2H); ¹³C NMR (CDCl₃) δ 13.87, 14.01, 16.06, 16.37, 22.67, 22.87, 26.67, 28.40, 28.50, 28.69, 28.85, 30.10, 35.18, 37.18, 41.70, 115.61, 116.21, 125.57, 125.68, 127.86, 127.96, 129.09, 136.58, 136.92, 139.79. Found: C, 89.59; H, 10.62%. Calcd for $C_{16}H_{22}$: C, 89.66; H, 10.34%.

1-Allyl-1-butyl-2-[(phenylmethoxy)methyl]cyclopropane (2/3=88/12). IR (neat) 3060, 3026, 2988, 2952, 2922, 2852, 1640, 1497, 1455, 1415, 1380, 1363, 1204, 1165, 1093, 1076, 1028, 995, 910, 733, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 0.13 (dd, $J=5.1$, 5.1 Hz, 0.12H), 0.18 (dd, $J=5.1$, 5.1 Hz, 0.88H), 0.50 -0.59 (m, 1H), 0.87 (t, J=6.9 Hz, 3H), 0.92-1.03 (m, 1H), $1.15-1.39$ (m, 6H), $1.98-2.16$ $(m, 2H), 3.41-3.60$ $(m, 2H), 4.51$ $(d, J=12.0 \text{ Hz}, 1H),$ 4.55 (d, J=12.0 Hz, 1H), 4.98–5.09 (m, 2H), 5.74–5.93 (m, 1H), 7.27–7.37 (m, 5H); ¹³C NMR (CDCl₃) major product ^d 13.95, 16.43, 22.75, 23.17, 23.53, 28.33, 35.40, 37.05, 70.74, 72.59, 115.67, 127.57, 127.78,

128.44, 137.31. Found: C, 83.69; H, 10.34%. Calcd for $C_{18}H_{26}O: C, 83.67; H, 10.14\%$.

General procedure for manganese(II) chloride-catalyzed reaction of gem-dibromocyclopropane

A solution of dibromocyclopropane 1a (0.28 g, 1.0 mmol) in THF (2 ml) was added to a THF solution of butylmagnesium bromide (3.0 mmol) and manganese(II) chloride (12 mg, 10 mol%) at -78° C. The mixture was stirred for 30 min at 0° C. Extractive workup (AcOEt, brine) followed by silica-gel column purification provided a mixture of 2a and 3a $(2a/3a=79/21, 136 \text{ mg})$ in 75% combined yield.

1-Allyl-2-hexylcyclopropane $(2/3=58/42)$. IR (neat) 3058, 2990, 2954, 2920, 2850, 1641, 1459, 1438, 1379, 1022, 992, 909, 719 cm⁻¹; ¹H NMR (CDCl₃) δ -0.30--0.23 (m, 0.42H), $0.14-0.23$ (m, 1.16H), 0.36 -0.50 (m, 1.16H), $0.56-0.65$ (m, 0.42H), $0.67-0.80$ (m, 0.84H), 0.86 (t, $J=6.9$ Hz, 3H), 1.13-1.44 (m, 10H), 1.87-2.15 (m, 2H), 4.93 (d, $J=9.9$ Hz, 0.58H), 4.95 (d, $J=10.2$ Hz, 0.42H), 5.02 (d, J=17.1 Hz, 0.58H), 5.07 (d, J=17.1 Hz, 0.42H), 5.85 (ddt, $J=17.1$, 9.9, 6.6 Hz, 0.58H), 5.90 (ddt, $J=17.1$, 10.2, 6.9 Hz, 0.42H); ¹³C NMR (CDCl₃) δ 10.56, 11.37, 13.99, 14.65, 15.71, 17.61, 18.40, 22.59, 28.62, 29.08, 29.24, 29.47, 30.03, 31.85, 32.75, 34.09, 38.09, 114.05, 114.20, 138.40, 139.06. Found: C, 86.43; H, 13.61%. Calcd for $C_{12}H_{22}$: C, 86.67; H, 13.33%.

1,1-Diallyl-2-hexylcyclopropane. ¹H NMR (CDCl₃) δ -0.04 (dd, J=4.5, 4.5 Hz, 1H), 0.43 (dd, J=8.7, 4.5 Hz, 1H), $0.53-0.63$ (m, 1H), 0.86 (t, $J=6.9$ Hz, 3H), 1.14-1.62 (m, 10H), 0.80 (dd, $J=13.8$, 6.6 Hz, 1H), 0.94 (dd, $J=13.8, 6.6$ Hz, 1H), 2.00-2.15 (m, 2H), 4.92-5.06 (m, 4H), 5.66–5.87 (m, 2H). HRMS calcd for $C_{15}H_{26}$ 206.2035, found 206.2036.

1-Dimethylphenylsilyl-2-hexylcyclopropane $(2/3=79/21)$. IR (neat) 3064, 3048, 2952, 2920, 2850, 1458, 1428, 1248, 1113, 1037, 943, 861, 831, 812, 770, 727, 698 cm⁻¹; ¹H NMR (CDCl₃) δ -0.54--0.45 (m, 0.79H), $-0.26 - 0.15$ (m, 0.21H), 0.14 (s, 2.37H), 0.16 (s, 2.37H), 0.24 (s, 0.63H), 0.27 (s, 0.63H), 0.31 -0.44 (m, 2H), 0.58 $-$ 0.68 (m, 1H), $0.82-0.91$ (m, 3H), $1.10-1.42$ (m, 10H), 7.30-7.36 (m, 3H), 7.50-7.59 (m, 2H); ¹³C NMR $(CDCl_3)$ δ -4.04, -3.78, 3.12, 8.91, 14.01, 15.66, 22.57, 29.10, 29.74, 31.86, 35.84, 127.70, 128.84, 133.86, 139.68. Found: C, 78.20; H, 10.92%. Calcd for C₁₇H₂₈Si: C, 78.38; H, 10.83%.

The reaction of 2-iodobenzofuran with tributylmanganate

A THF (2 ml) solution of 2-iodobenzofuran (6, 0.24 g, 1.0 mmol)¹⁴ was added at 0°C to a solution of tributylmanganate generated from $MnCl₂$ (163 mg, 1.3 mmol) and butylmagnesium bromide (3.9 mmol). The resulting mixture was stirred at 0° C for 30 min and then at 50 $^{\circ}$ C for 2.5 h. The mixture was poured into 1 M HCl and extracted with ethyl acetate $(20 \text{ m} \times 3)$. The combined organic layer was dried over $Na₂SO₄$ and concentrated in vacuo. The crude products were purified by silica-gel column chromatography (hexane/ethyl acetate= $5/1$) to give

2- $[(E)$ -1-hexenyl]phenol (**9a**): IR (neat) 3032, 2954, 2924, 2854, 1606, 1586, 1499, 1486, 1455, 1378, 1330, 1294, 1239, 1177, 1089, 971, 848, 800, 748 cm⁻¹; ¹H NMR $(CDCl_3)$ δ 0.93 (t, J=6.9 Hz, 3H), 1.31-1.53 (m, 4H), 4.24 (dt, $J=6.9$, 6.9 Hz, 2H), 4.94 (s, 1H), 6.19 (dt, $J=15.9$, 6.9 Hz, 1H), 6.55 (d, $J=15.9$ Hz, 1H), 6.79 (dd, $J=7.8$, 1.2 Hz, 1H), 6.88 (ddd, $J=7.8$, 7.8, 1.2 Hz, 1H), 7.10 (ddd, $J=7.8$, 7.8, 1.8 Hz, 1H), 7.31 (dd, $J=7.8$, 1.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.83, 22.17, 31.42, 33.04, 115.70, 120.91, 123.63, 125.10, 127.43, 128.02, 133.84, 152.48. Found: C, 81.50; H, 8.94%. Calcd for $C_{12}H_{16}O: C, 81.77; H, 9.15\%$.

General procedure for the reaction of 2-iodobenzofuran with Grignard reagent in the presence of a catalytic amount of MnCl₂

Preparation of 9b is representative. Ethylmagnesium bromide (0.93 M, ether solution, 3.2 ml, 3.0 mmol) was added to a suspension of MnCl₂ (12 mg, 10 mol%) in Et₂O (10 ml) at 0° C under argon atmosphere. After being stirred for 20 min at 0° C, a solution of 6 (0.24 g, 1.0 mmol) in Et₂O (2 ml) was added. The mixture was stirred for 30 min at 0° C then for 1 h for 25° C. Extractive workup followed by silica-gel column purification provided 9b. Physical data for 9b were identical with those reported in literature.¹

General procedure for the trapping of an intermediary alkenylmagnesium

Preparation of 11b is representative. A solution of $6(0.24 \text{ g})$, 1.0 mmol) in Et₂O (2 ml) was added to a Et₂O solution of butylmagnesium bromide (3.0 mmol) and MnCl₂ (12 mg) , $10 \text{ mol}\%$) at 0°C under argon atmosphere. The resulting mixture was stirred for 30 min at 0° C and then for 1 h at 25 $^{\circ}$ C. The mixture was cooled to 0° C and allyl bromide (8.0 mmol) was added. After being stirred for 30 min at 0° C, the whole mixture was stirred for 1 h at 25 $^{\circ}$ C. Extractive workup followed by silica-gel column purification provided 11b in 63% yield.

3-Butyl-2H-benzopyran-2-one.¹⁶ A suspension of manganese(II) chloride (12 mg, 10 mol%) in Et₂O was sonicated for 10 min under argon atmosphere. Butylmagnesium bromide $(0.91 \text{ M}, \text{Et}_2\text{O} \text{ solution}, 3.3 \text{ ml}, 3.0 \text{ mmol})$ was added to the resulting suspension of $MnCl₂$ at 0°C. The mixture was stirred for 20 min. A Et₂O solution of 6 (1.0 mmol) was added and stirred for 30 min at 0°C. The whole mixture was warmed to 25° C and stirred for 1 h. The mixture was cooled to -78° C and a piece of dry ice was added at -78° C. The reaction mixture was warmed to 25° C over 30 min. Usual workup and purification by silica-gel column chromatography afforded 3-butyl-2H-benzopyran-2-one in 53% yield.

References

1. Normant, J. F.; Cahiez, G. In Organomanganous Reagents in Modern Synthetic Methods, Scheffold, R. Ed.; Otto Salle Verlag GmbH & Co: Frankfurt am Main, 1983 ; Vol. 3, pp $173-216$. 2. Kitatani, K.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1976, 98, 2362-2364; Kitatani, K.; Hiyama, T.; Nozaki, H. Bull. Chem.

Scheme 7.

Soc. Jpn. 1977, 50, 1600-1607; Kitatani, K.; Hiyama, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1977, 50, 3288-3294; Kitatani, K.; Yamamoto, H.; Hiyama, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1977, 50, 2158-2160.

3. Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. J. Org. Chem. 1993, 58, 2958-2965; Harada, T.; Hattori, K.; Katsuhira, T.; Oku, A. Tetrahedron Lett. 1989, 30, 6035-6038, 6039-6040.

4. Cyclopropylborate has been also reported to undergo similar 1,2-migration: Danheiser, R. L.; Savoca, A. C. J. Org. Chem. 1985, 50, 2401-2403.

5. Fugami, K.; Hibino, J.; Nakatsukasa, S.; Matsubara, S.; Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1988, 44, 4277±4292; Fugami, K.; Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1986, 27, 2161-2164.

6. Monobromide could be obtained by quenching an intermediary manganate 4 with H_2O before being converted to 5.

7. Cahiez, G.; Laboue, B. Tetrahedron Lett. 1989, 30, 7369-7372 (and references cited therein).

8. 1-Alkylcyclopropylzincates have been reported to react with alkenyl halide in the presence of a Pd catalyst. See Ref. 3.

9. Suzuki, A.; Miyaura, N.; Itoh, M. Tetrahedron 1971, 27, 2775-2783.

10. Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M. J. Org. Chem. 1984, 49, 4894-4899.

11. Utimoto, K.; Sakai, N.; Obayashi, M.; Nozaki, H. Tetrahedron 1976, 32, 769-771.

12. α -Lithiation of benzofuran followed by treatment with various organolithium has been reported to give ring-opened (E) -alkenyllithium stereoselectively. Nguyen, T.; Negishi, E. Tetrahedron Lett. 1991, 32, 5903-5906. Treatment of α -lithiobenzofuran with various trialkylmanganate $n-Bu_3MnMgBr$, Et₃MnMgBr or $Me₃MnMgBr$ provided the corresponding 2-alkenylphenol **9a**, **9b** or 9e in 58, 53, or 57% yield, respectively (Scheme 7).

13. Ga, Y.; Julia, M.; Verpeanx, J. N. Bull. Soc. Chim. Fr. 1996, 133, 817±829.

14. Mann, I. S.; Widdowson, D. A.; Clough, J. M. Tetrahedron 1991, 47, 7981-7990.

15. Bader, A. R. J. Am. Chem. Soc. 1956, 78, 1709-1713.

16. Bouvier, P.; Andrieux, J.; Cunha, H.; Molho, D. Bull. Soc. Chim. Fr. 1977, 1187-1194.